2个回答
展开全部
∫1/(cosx)^3 dx = ∫cosx/(cosx)^4 dx
=-∫dsinx/(1-(sinx)^2)^2
=∫dt/(1-t^2)^2
令1/(1-t^2)^2=(a+bt)/(1-t)^2 +(c +dt)/(1+t)^2
=[(a+bt)(1+t)^2 +(c+dt)(1-t)^2]/(1-t^2)^2
=[(b+d)t^3 +(2b+a+c-2d)t^2 +(b+2a+c-2d)t +a+c]/(1-t^2)^2
b+d=0 => d=-b
2b+a+c-2d=0 => 4b +a+c=0
b+2a+c-2d =0 => 3b+2a+c =0
a+c =1 => a+c=1
b= -1/4
a=-1/4
d=1/4
c=3/4
原积分=1/4∫(3+4t)/(1+t)^2 -(1+t)/(1-t)^2 dt
=1/4∫4/(t+1) - 1/(t+1)^2 -2/(1-t)^2 +1/(1-t) dt
=ln(t+1) +1/(t+1) +1/(1-t) - ln(1-t)
然后带人上下限即可
=-∫dsinx/(1-(sinx)^2)^2
=∫dt/(1-t^2)^2
令1/(1-t^2)^2=(a+bt)/(1-t)^2 +(c +dt)/(1+t)^2
=[(a+bt)(1+t)^2 +(c+dt)(1-t)^2]/(1-t^2)^2
=[(b+d)t^3 +(2b+a+c-2d)t^2 +(b+2a+c-2d)t +a+c]/(1-t^2)^2
b+d=0 => d=-b
2b+a+c-2d=0 => 4b +a+c=0
b+2a+c-2d =0 => 3b+2a+c =0
a+c =1 => a+c=1
b= -1/4
a=-1/4
d=1/4
c=3/4
原积分=1/4∫(3+4t)/(1+t)^2 -(1+t)/(1-t)^2 dt
=1/4∫4/(t+1) - 1/(t+1)^2 -2/(1-t)^2 +1/(1-t) dt
=ln(t+1) +1/(t+1) +1/(1-t) - ln(1-t)
然后带人上下限即可
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |