![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
微积分证明题求解。
展开全部
∫[-a, 0] f(x) dx + ∫[0, a] f(x) dx = 0
第一项中,令 u = -x, 代入得,
-∫[a, 0] f(-u) du + ∫[0, a] f(x) dx = 0
=> ∫[0, a] f(-x)+ f(x) dx = 0
根据积分中值定理得,存在0<ζ<a,使得f(ζ)+f(-ζ)=0
-------
思考:此题有无可能f(ζ)+f(-ζ) ≠ 0?如何证明?
第一项中,令 u = -x, 代入得,
-∫[a, 0] f(-u) du + ∫[0, a] f(x) dx = 0
=> ∫[0, a] f(-x)+ f(x) dx = 0
根据积分中值定理得,存在0<ζ<a,使得f(ζ)+f(-ζ)=0
-------
思考:此题有无可能f(ζ)+f(-ζ) ≠ 0?如何证明?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询