
lim→0[∫(上限x,下限0)(1+t^2)e^t^2dt]/xe^x^2
1个回答
展开全部
分析:当x→0时,分子分母均趋向于0,且分子分母对应的函数均为连续函数,由此考虑用洛必达法则。
解:原式=lim(x→0)[(1+x^2)(e^x^2)]/[(e^x^2)+2xe^(x^2)]
=lim(x→0)(1+x^2)/(1+2x)
=1
解:原式=lim(x→0)[(1+x^2)(e^x^2)]/[(e^x^2)+2xe^(x^2)]
=lim(x→0)(1+x^2)/(1+2x)
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |