设随机变量x服从区域d上的均匀分布,其中d是由x轴,y轴以及x+y=1,求ρxy
设(X,Y)服从在D上的均匀分布,其中D由x轴、y轴及x+y=1所围成,求D(X)答案:E(X)=1/3E(XX)=1/6D(X)=E(XX)-E(X)E(X)=1/18...
设(X,Y)服从在D上的均匀分布,其中D由x轴、y轴及x+y=1所围成,求D(X)
答案:E(X)=1/3
E(XX)=1/6
D(X)=E(XX)-E(X)E(X)=1/18
求解法 展开
答案:E(X)=1/3
E(XX)=1/6
D(X)=E(XX)-E(X)E(X)=1/18
求解法 展开
展开全部
D的面积S=1/2,密度函数f(x,y)=2,(x∈D).
E(X)=∫∫[D]xf(x,y)dxdy
=∫[0,1]2xdx∫[0,1-x]dy
=∫[0,1]2x(1-x)dx
=(x^2-2x^3/3)|[0,1]
=1/3.
E(X^2)=∫∫[D]x^2f(x,y)dxdy
=∫[0,1]2x^2dx∫[0,1-x]dy
=∫[0,1]2x^2(1-x)dx
=(2x^3/3-2x^4/4)|[0,1]
=1/6.
D(X)=E(X^2)-[E(X)]^2=1/6-(1/3)^2=1/18.
E(X)=∫∫[D]xf(x,y)dxdy
=∫[0,1]2xdx∫[0,1-x]dy
=∫[0,1]2x(1-x)dx
=(x^2-2x^3/3)|[0,1]
=1/3.
E(X^2)=∫∫[D]x^2f(x,y)dxdy
=∫[0,1]2x^2dx∫[0,1-x]dy
=∫[0,1]2x^2(1-x)dx
=(2x^3/3-2x^4/4)|[0,1]
=1/6.
D(X)=E(X^2)-[E(X)]^2=1/6-(1/3)^2=1/18.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询