怎样证明一个函数的导数不存在呢? 举个例子! 尤其是2元函数的导数。

 我来答
纪楚淡永望
2020-06-17 · TA获得超过1114个赞
知道小有建树答主
回答量:2035
采纳率:100%
帮助的人:9.8万
展开全部
分两类:
1.函数在该点不连续,则其在该点的导数自然就不存在
2.函数在该点连续,但在该点的左右导数不相等,那该点的导数也不存在.
如:f(x)=|x|,该函数在x=0处的左导数f'(0-)=-1,右导数f'(0+)=1,左右导数不相等,所以f(x)=|x|在x=0处不可导.
二元函数很复杂,不过二元函数一般是要证微分不存在,因为如果可微就一定连续且可导,而连续或可导却不一定可微.
判断二元函数在某点的可导性,可先将该点的一个坐标代入(如横坐标),然后按照一元函数的方法判断.而可微性一般由定义来判断,或是能推出某个偏导数不存在也可以(不过一般的题目两个偏导数都存在,此时只能用定义).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式