求如图不定积分 20
2个回答
展开全部
∫dx/(x+√a^2-x^2)
=∫d(x/a)/(x/a+√(1-(x/a)^2) )
令x/a=sinu
=∫dsinu/(cosu+sinu)
=(1/√2)∫cosudu/sin(u+π/4)
=(1/√2)∫[cos(u+π/4)cos(π/4)+sin(u+π/4)sin(π/4)]du/sin(u+π/4)
=(1/2)∫cos(u+π/4)du/sin(u+π/4)+ (1/2)u
=(1/2)ln|sin(u+π/4)|+(1/2)u +C
反带回x
=(1/2)ln|√2[x/a+√(1-x^2/a^2)]|+(1/2)u+C0
=(1/2)ln|x+√(a^2-x^2)|+(1/2)arcsin(x/a)+C
=∫d(x/a)/(x/a+√(1-(x/a)^2) )
令x/a=sinu
=∫dsinu/(cosu+sinu)
=(1/√2)∫cosudu/sin(u+π/4)
=(1/√2)∫[cos(u+π/4)cos(π/4)+sin(u+π/4)sin(π/4)]du/sin(u+π/4)
=(1/2)∫cos(u+π/4)du/sin(u+π/4)+ (1/2)u
=(1/2)ln|sin(u+π/4)|+(1/2)u +C
反带回x
=(1/2)ln|√2[x/a+√(1-x^2/a^2)]|+(1/2)u+C0
=(1/2)ln|x+√(a^2-x^2)|+(1/2)arcsin(x/a)+C
追答
满意请采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询