线性代数,求详细分析和解题过程
展开全部
可由 β1,β2 线性表出, 则可设 γ = pβ1+qβ2 = (-3p, 2p+q, -5p+q)^T, 则
A = (α1, α2, γ) =
[1 2 -3p]
[0 -1 2p+q]
[2 3 -5p+q]
初等行变换为
[1 2 -3p]
[0 -1 2p+q]
[0 -1 p+q]
初等行变换为
[1 0 p+2q]
[0 1 -2p-q]
[0 0 -p]
r(A) = < 3, 得 p = 0
初等行变换为
[1 0 2q]
[0 1 -q]
[0 0 0]
故得所有满足条件的向量 γ = q(2, -1, 0)^T, q 为任意常数。
A = (α1, α2, γ) =
[1 2 -3p]
[0 -1 2p+q]
[2 3 -5p+q]
初等行变换为
[1 2 -3p]
[0 -1 2p+q]
[0 -1 p+q]
初等行变换为
[1 0 p+2q]
[0 1 -2p-q]
[0 0 -p]
r(A) = < 3, 得 p = 0
初等行变换为
[1 0 2q]
[0 1 -q]
[0 0 0]
故得所有满足条件的向量 γ = q(2, -1, 0)^T, q 为任意常数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询