求一个不定积分的题目,谢谢
展开全部
设 x = sint,则 dx = cost*dt
∫x^2*√(1-x^2) *dx
=∫(sint)^2*cost *(cost)*dt
=∫(sint*cost)^2*dt
=1/4*∫(2sint*cost)^2 *dt
=1/4*∫(sin2t)^2 *dt
=1/8*∫2*(sin2t)^2 *dt
=1/8*∫[1-cos4t]*dt
=1/8*∫dt - 1/8*∫cos4t*dt
=1/8*t -1/32*sin4t + C
=1/8*t - 1/16* sin2t*cos2t + C
=1/8*t - 1/8 * sint*cost*[1-2(sint)^2] + C
=1/8*t - 1/8*x*√(1-x^2)*(1-2x^2) + C
∫x^2*√(1-x^2) *dx
=∫(sint)^2*cost *(cost)*dt
=∫(sint*cost)^2*dt
=1/4*∫(2sint*cost)^2 *dt
=1/4*∫(sin2t)^2 *dt
=1/8*∫2*(sin2t)^2 *dt
=1/8*∫[1-cos4t]*dt
=1/8*∫dt - 1/8*∫cos4t*dt
=1/8*t -1/32*sin4t + C
=1/8*t - 1/16* sin2t*cos2t + C
=1/8*t - 1/8 * sint*cost*[1-2(sint)^2] + C
=1/8*t - 1/8*x*√(1-x^2)*(1-2x^2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询