如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF
展开全部
证法1:【简单的】
连接DE
∵AD=BC,AE=BC
∴AE=AD
∴∠AED=∠ADE
∵AD//BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
∵∠DFE=∠C=90º
∴∠FDE=∠CDE
∴CE=EF【角平分线上的点到角两边的距离相等】
证法2:
∵AE=BC,AD=BC
∴AE=AD
∵AD//BC
∴∠DAF=∠AEB
又∵∠AFD=∠B=90º
∴⊿ADF≌⊿EAB(AAS)
∴AF=BE
∴AE-AF=BC-BE
即EF=CE
记得采纳哦 O(∩_∩)O谢谢
连接DE
∵AD=BC,AE=BC
∴AE=AD
∴∠AED=∠ADE
∵AD//BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
∵∠DFE=∠C=90º
∴∠FDE=∠CDE
∴CE=EF【角平分线上的点到角两边的距离相等】
证法2:
∵AE=BC,AD=BC
∴AE=AD
∵AD//BC
∴∠DAF=∠AEB
又∵∠AFD=∠B=90º
∴⊿ADF≌⊿EAB(AAS)
∴AF=BE
∴AE-AF=BC-BE
即EF=CE
记得采纳哦 O(∩_∩)O谢谢
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
证法1:【简单的】
连接DE
∵AD=BC,AE=BC
∴AE=AD
∴∠AED=∠ADE
∵AD//BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
∵∠DFE=∠C=90º
∴∠FDE=∠CDE
∴CE=EF【角平分线上的点到角两边的距离相等】
证法2:
∵AE=BC,AD=BC
∴AE=AD
∵AD//BC
∴∠DAF=∠AEB
又∵∠AFD=∠B=90º
∴⊿ADF≌⊿EAB(AAS)
∴AF=BE
∴AE-AF=BC-BE
即EF=CE
如果满意记得采纳哦!
你的好评是我前进的动力。
(*^__^*) 嘻嘻……
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!!!
连接DE
∵AD=BC,AE=BC
∴AE=AD
∴∠AED=∠ADE
∵AD//BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
∵∠DFE=∠C=90º
∴∠FDE=∠CDE
∴CE=EF【角平分线上的点到角两边的距离相等】
证法2:
∵AE=BC,AD=BC
∴AE=AD
∵AD//BC
∴∠DAF=∠AEB
又∵∠AFD=∠B=90º
∴⊿ADF≌⊿EAB(AAS)
∴AF=BE
∴AE-AF=BC-BE
即EF=CE
如果满意记得采纳哦!
你的好评是我前进的动力。
(*^__^*) 嘻嘻……
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明 连接DE
矩形对边平行且相等。。
BC=AD
由已知有 AE=BC
则AD=AE 等量代换
则三角形AED为等腰。
有角AED=角ADE 等腰三角形底角相等
又角ADE=角CED 平行线内错角相等
则角CED=角AED 等量代换
DF垂直 角C=90(矩形性质 四顶角都是直角)
DE公共边。
有三角形DFE全等于三角形DCE (AAS)
得证。
矩形对边平行且相等。。
BC=AD
由已知有 AE=BC
则AD=AE 等量代换
则三角形AED为等腰。
有角AED=角ADE 等腰三角形底角相等
又角ADE=角CED 平行线内错角相等
则角CED=角AED 等量代换
DF垂直 角C=90(矩形性质 四顶角都是直角)
DE公共边。
有三角形DFE全等于三角形DCE (AAS)
得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询