已知△ABC中,sinA(sinB+√3cosB)=√3sinC)1.求角A的大小;(2)若BC=3,求△ABC周长的取值范围。第二问?
1个回答
2010-12-18 · 知道合伙人教育行家
关注
展开全部
sinA(sinB+√3cosB)=√3sinC
sinA(sinB+√3cosB)=√3sin(180-A-B)
sinA(sinB+√3cosB)=√3sin(A+B)
sinAsinB+√3sinAcosB=√3sinAcosB+根号3cosAsinB
sinAsinB=根号3cosAsinB
tanA=根号3
A=π/3
sinA=(根号3)/2,cosA=1/2
BC/sinA=AB/sinC=AC/sinB
AB=BCsinC/sinA=3sinC/sin(π/3)=2根号3sinC
AC=BCsinB/sinA=3sinB/sin(π/3)=2根号3sinB
周长=AB+AC+BC=2根号3sinC+2根号3sinB+3
=2根号3sin(π-A-B)+2根号3sinB+3
=2根号3sin(A+B)+2根号3sinB+3
=2根号3(sinAcosB+cosAsinB)+2根号3sinB+3
=2根号3(sinAcosB+cosAsinB)+2根号3sinB+3
=2根号3(根号3/2cosB+1/2sinB)+2根号3sinB+3
=3cosB+根号3sinB+2根号3sinB+3
=3(cosB+根号3sinB)+3
=6(1/2cosB+根号3/2sinB)+3
=6sin(B+π/6)+3
0<B<2π/3
π/6 < B+π/6 < 5π/6
sin(B+π/6) 值域(1/2,1】
周长值域(6,9】
即取值范围:大于6,并且小于等于9
sinA(sinB+√3cosB)=√3sin(180-A-B)
sinA(sinB+√3cosB)=√3sin(A+B)
sinAsinB+√3sinAcosB=√3sinAcosB+根号3cosAsinB
sinAsinB=根号3cosAsinB
tanA=根号3
A=π/3
sinA=(根号3)/2,cosA=1/2
BC/sinA=AB/sinC=AC/sinB
AB=BCsinC/sinA=3sinC/sin(π/3)=2根号3sinC
AC=BCsinB/sinA=3sinB/sin(π/3)=2根号3sinB
周长=AB+AC+BC=2根号3sinC+2根号3sinB+3
=2根号3sin(π-A-B)+2根号3sinB+3
=2根号3sin(A+B)+2根号3sinB+3
=2根号3(sinAcosB+cosAsinB)+2根号3sinB+3
=2根号3(sinAcosB+cosAsinB)+2根号3sinB+3
=2根号3(根号3/2cosB+1/2sinB)+2根号3sinB+3
=3cosB+根号3sinB+2根号3sinB+3
=3(cosB+根号3sinB)+3
=6(1/2cosB+根号3/2sinB)+3
=6sin(B+π/6)+3
0<B<2π/3
π/6 < B+π/6 < 5π/6
sin(B+π/6) 值域(1/2,1】
周长值域(6,9】
即取值范围:大于6,并且小于等于9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询