今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?
1个回答
展开全部
最早提出并记叙这个数学问题的,是南北朝时期的数学著作《
》中的“
”题目。这道“
”的题目是这样的:
“今有一些物不知其数量。如果三个三个地去数它,则最后还剩二个;如果五个五个地去数它,则最后还剩三个;如果七个七个地去数它,则最后也剩二个。问:这些物一共有多少?”
不是如你所理解的那样。实际上70是能被5和7整除但被3除余1,21能被3和7整除但5除余1,15能被3和5整除但被7除余1。题目中此数被3除余2,那就用70乘以2,被5除余3,那么就用21乘3,被7除余2,那就15乘2,相加。70×2 + 21×3 +15×2=233。
看情况减3、5、7的最小公倍数的倍数。此题减105的2倍,得到23。
这个系统算法是南宋时期的
研究后得到的。
这就是著名的
。
》中的“
”题目。这道“
”的题目是这样的:
“今有一些物不知其数量。如果三个三个地去数它,则最后还剩二个;如果五个五个地去数它,则最后还剩三个;如果七个七个地去数它,则最后也剩二个。问:这些物一共有多少?”
不是如你所理解的那样。实际上70是能被5和7整除但被3除余1,21能被3和7整除但5除余1,15能被3和5整除但被7除余1。题目中此数被3除余2,那就用70乘以2,被5除余3,那么就用21乘3,被7除余2,那就15乘2,相加。70×2 + 21×3 +15×2=233。
看情况减3、5、7的最小公倍数的倍数。此题减105的2倍,得到23。
这个系统算法是南宋时期的
研究后得到的。
这就是著名的
。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询