环积分∮怎么计算?

和普通的积分一样吗?还有在∫下面多了个V是什么意思?... 和普通的积分一样吗?还有在∫下面多了个V是什么意思? 展开
鲨鱼星小游戏
高粉答主

2021-05-25 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238448

向TA提问 私信TA
展开全部

一般都是直角坐标系下的积分,但是当积分路径沿着曲线时,就有了曲线积分的定义,当积分的曲线路径是闭环时,在表达上就可以用∮来表示。同理,当我是在体积域上积分时,下面写个V就表示体积分,相应的积分的微量是dV。

上述的只是积分的表达形式,他们的基本含义是一样。包括最终的计算,都可以转化为直角坐标系下的积分来进行,比如上面的体积分可以转换为三重积分∫∫∫f(x,y,z)dxdydz。

积分通常分为定积分和不定积分两种。

直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

亦是如此
高粉答主

2021-05-25 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544605

向TA提问 私信TA
展开全部

一般都是直角坐标系下的积分,但是当积分路径沿着曲线时,就有了曲线积分的定义,当积分的曲线路径是闭环时,在表达上就可以用∮来表示。同理,当我是在体积域上积分时,下面写个V就表示体积分,相应的积分的微量是dV。

上述的只是积分的表达形式,他们的基本含义是一样。包括最终的计算,都可以转化为直角坐标系下的积分来进行,比如上面的体积分可以转换为三重积分∫∫∫f(x,y,z)dxdydz。

相关内容说明:

积分通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
learneroner
高粉答主

推荐于2016-12-01 · 关注我不会让你失望
知道大有可为答主
回答量:1.1万
采纳率:91%
帮助的人:6618万
展开全部
一般都是直角坐标系下的积分,但是当积分路径沿着曲线时,就有了曲线积分的定义,当积分的曲线路经是闭环时,在表达上就可以用∮来表示。同理,当我是在体积域上积分时,下面写个V就表示体积分,相应的积分的微量是dV。
上述的只是积分的表达形式,他们的基本含义是一样。包括最终的计算,都可以转化为直角坐标系下的积分来进行,比如上面的体积分可以转换为三重积分∫∫∫f(x,y,z)dxdydz。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式