已知函数fx=2cosx·sin(x+π/3)-根号3sin2x+sinx·cosx当x∈0,π/2求fx值域
1个回答
展开全部
f(x)=2cosx*sin(x+π/3)-√3sin^2x+sinx*cosx
= 2cosx*sin(x+π/3)- 2sinx*[(√3/2)sinx-(1/2)cosx]
= 2cosx*sin(x+π/3)- 2sinx*[sin(π/3)sinx-cos(π/3)cosx)]
= 2cosx*sin(x+π/3)+ 2sinxcos(x+π/3)
= 2sin(2x+π/3)
又因为
当x∈0,π/2
所以F(x)∈【-√3,2】
希望对你有所帮助 还望采纳~~
= 2cosx*sin(x+π/3)- 2sinx*[(√3/2)sinx-(1/2)cosx]
= 2cosx*sin(x+π/3)- 2sinx*[sin(π/3)sinx-cos(π/3)cosx)]
= 2cosx*sin(x+π/3)+ 2sinxcos(x+π/3)
= 2sin(2x+π/3)
又因为
当x∈0,π/2
所以F(x)∈【-√3,2】
希望对你有所帮助 还望采纳~~
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询