急求解 一道高中数学题
已知圆的方程为x²+y²=4,动抛物线过点A(-1,0),B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程是▁▁▁▁▁...
已知圆的方程为x²+y²=4 ,动抛物线过点A(-1,0) , B(1,0) , 且以圆的切线为准线,则抛物线的焦点的轨迹方程是▁▁▁▁▁
展开
展开全部
由于A,B都在x轴上,所以准线不可能垂直于x轴,也就是说焦点不会在x轴上
对任意一条切线,做AA1,BB1分别垂直于切线于A1,B1,所以四边形AA1B1B是一个直角梯形,设切点为C,连接OC,由于O是AB中点,所以OC是中位线,因此
AA1+BB1=2OC=4
由抛物线的定义可知:AA1,BB1分别等于点A,B到焦点的距离
因此焦点满足:到A,B的距离之和等于定值4,所以轨迹是以A,B为焦点的椭圆
2a=4,c=1
a=2,b=√3
所以方程为:x²/4+y²/3=1(y≠0)
对任意一条切线,做AA1,BB1分别垂直于切线于A1,B1,所以四边形AA1B1B是一个直角梯形,设切点为C,连接OC,由于O是AB中点,所以OC是中位线,因此
AA1+BB1=2OC=4
由抛物线的定义可知:AA1,BB1分别等于点A,B到焦点的距离
因此焦点满足:到A,B的距离之和等于定值4,所以轨迹是以A,B为焦点的椭圆
2a=4,c=1
a=2,b=√3
所以方程为:x²/4+y²/3=1(y≠0)
展开全部
好难啊,准线不是垂直X轴的我都没学过
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先给一个假设(别问为什么):动抛物线的焦点P和抛物线的顶点连线一定过原点,且交园于C D两点,令过C点的切线是抛物线的准线,做两直线分别过A B垂直交准线与E F,则OC是梯形ABEF的中位线,则:AP=AE,BP=BF,AE+BF=2OC=2R =》AP+BP=2OC=4
由椭圆定义,2a=4,2c=2,以下略。(注意Y不能等于0)
关于那个假设,我不能给出严格的数学证明,但是你做几个一般位置的图就会发现确实是这样。
由椭圆定义,2a=4,2c=2,以下略。(注意Y不能等于0)
关于那个假设,我不能给出严格的数学证明,但是你做几个一般位置的图就会发现确实是这样。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询