已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(...
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.(I)求f(0)的值;(II)求f(x)的最大值;(III)设数列{an}的前n项和为Sn,且Sn=?12(an?3)(n∈N*),求f(a1)+f(a2)+…+f(an).
展开
小贼仕访517
推荐于2016-09-12
·
TA获得超过118个赞
关注
(Ⅰ)令x
1=x
2=0,
由③知f(0)=2f(0)-2?f(0)=2;
(Ⅱ)任取x
1x
2∈[0,1],且x
1<x
2,
则0<x
2-x
1≤1,∴f(x
2-x
1)≥2
∴f(x
2)-f(x
1)=f[(x
2-x
1)+x
1]-f(x
1)
=f(x
2-x
1)+f(x
1)-2-f(x
1)=f(x
2-x
1)-2≥0
∴f(x
2)≥f(x
1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由
Sn=?(an?3)知,
当
n=1时,a1=1;当n≥2时,an=?an+an?1∴
an=an?1(n≥2),又a1=1,∴an=∴
f(an)=f()=f(++)=f()+f()?2=
3f()?4=3f(an+1)?4∴
f(an+1)=f(an)+∴
f(an+1)?2=(f(an)?2)又f(a
1)-2=1∴
f(an)?2=()n?1,∴f(an)=()n?1+2∴
f(a1)+f(a2)++f(an)=2n+?.
收起
为你推荐: