10以内所有质数的和是多少
10以内所有素数的和是17。 即2+3+5+7=17。质数又称素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。
比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。
扩展资料
素数的重要性质:
1、素数无限定理,用反证法容易证明,素数有无穷多个。关于这一点,欧几里得的《几何原本》中已有记载。
2、贝特朗定理,对任一实数x≥1,在x及2x之间必有一素数。这一假设是由贝特朗提出的,并于1848年被切比雪夫所证明。
3、素数定理,从不大于n的自然数随机选一个,它是素数的概率大约是1/lnn。因此,素数的分布越往上越稀疏。这一点也可以从D.B.扎盖尔编制的素数表中得到验证。
4、存在任意长度的素数等差数列,这一结论由格林和陶哲轩于2004年证明。
孪生素数就是指相差2的素数对,例如3和5,5和7,11和13…。这个猜想由希尔伯特在1900年国际数学家大会的报告上第8个问题中正式提出,可以这样描述:存在无穷多个素数p,使得p+2是素数。
参考资料来源:百度百科—质数
10以内所有质数的和是18,算式写作:1+2+3+5+7=18。
1、10以内所有质数可以进行列举:1、2、3、5、7;
2、10以内所有质数的和为:1+2+3+5+7=18。
扩展资料:
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。
因为10以内的质数有2,3,5,7加起来就是17