已知函数f(x)=x3+ax2-a.(Ⅰ)求函数f(x)的单调增区间.(Ⅱ)对任意a≤-3,使得f(1)是函数f(x)
已知函数f(x)=x3+ax2-a.(Ⅰ)求函数f(x)的单调增区间.(Ⅱ)对任意a≤-3,使得f(1)是函数f(x)在区间[1,b](b>1)上的最大值,试求最大的实数...
已知函数f(x)=x3+ax2-a.(Ⅰ)求函数f(x)的单调增区间.(Ⅱ)对任意a≤-3,使得f(1)是函数f(x)在区间[1,b](b>1)上的最大值,试求最大的实数b.
展开
展开全部
(Ⅰ)∵f(x)=x3+ax2-a.
∴f′(x)=3x2+2ax=3x(x+
a),
∴当a=0时,f′(x)≥0,函数f(x)的单调增区间是(-∞,+∞);
当a>0时,由f′(x)>0得,x<-
或x>0,故函数f(x)的单调增区间是(-∞,-
),(0,+∞);
当a<0时,由f′(x)>0得,x>-
或x<0,故函数f(x)的单调增区间是(-
,+∞),(-∞,0);
(Ⅱ)∵a≤-3,∴-
≥2,∴不论-
<b还是-
≥b,由题意可知f(1)≥f(b)即可,
∴b3+ab2-a-1≤0,令g(a)=b3+ab2-a-1,∵b>1,
∴只要g(-3)=b3-3b2+2≤0,即(b-1)(b2-2b-2)≤0,解得1<b≤1+
,
∴b的最大值是1+
.
∴f′(x)=3x2+2ax=3x(x+
2 |
3 |
∴当a=0时,f′(x)≥0,函数f(x)的单调增区间是(-∞,+∞);
当a>0时,由f′(x)>0得,x<-
2a |
3 |
2a |
3 |
当a<0时,由f′(x)>0得,x>-
2a |
3 |
2a |
3 |
(Ⅱ)∵a≤-3,∴-
2a |
3 |
2a |
3 |
2a |
3 |
∴b3+ab2-a-1≤0,令g(a)=b3+ab2-a-1,∵b>1,
∴只要g(-3)=b3-3b2+2≤0,即(b-1)(b2-2b-2)≤0,解得1<b≤1+
3 |
∴b的最大值是1+
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询