若函数f(x)=loga(x2-ax+3)(a>0且a≠1),满足对任意的x1.x2,当x1<x2≤a2时,f(x1)-f(x2)>0

若函数f(x)=loga(x2-ax+3)(a>0且a≠1),满足对任意的x1.x2,当x1<x2≤a2时,f(x1)-f(x2)>0,则实数a的取值范围为()A.(0,... 若函数f(x)=loga(x2-ax+3)(a>0且a≠1),满足对任意的x1.x2,当x1<x2≤a2时,f(x1)-f(x2)>0,则实数a的取值范围为(  )A.(0,1)∪(1,3)B.(1,3)C.(0.1)∪(1,23)D.(1,23) 展开
 我来答
啊暖生球的膳129
推荐于2016-02-22 · TA获得超过105个赞
知道答主
回答量:117
采纳率:0%
帮助的人:132万
展开全部
“对任意的x1.x2,当x1< x2
a
2
时,f(x1)-f(x2)>0”
实质上就是“函数单调递减”的“伪装”,同时还隐含了“f(x)有意义”.
事实上由于g(x)=x2-ax+3在x
a
2
时递减,
从而
a>1
g(
a
2
)>0
由此得a的取值范围为(1,2
3
)

故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式