
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+),(1)求证数列{an+2}为等比数列;(2)若数列{bn}
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+),(1)求证数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列...
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+),(1)求证数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求证:Tn≥12.
展开
1个回答
展开全部
(1)令n=1,由Sn=2an-2n可得a1=2.
再由Sn=2an-2n(n∈N+),可得 sn+1=2an+1-2(n+1),
∴sn+1-Sn =2an+1-2an-2,即 an+1=2an +2,故有 an+1+2=2(an +2 ),
故数列{an+2}是以4为首项,以2为公比的等比数列.
(2)由(1)知,an +2=4×2n-1,∴bn=log2(an+2)=log2(4×2n-1 )=n+1,
∴
=
=
.
∴数列{
}的前n项和Tn=
+
+
+…+
①,
∴
Tn=
+
+
+…+
②,
①-②可得
Tn=
+
+
+…+
-
=
+
-
=
-
,
故Tn=
-
,∴Tn+1=
-
,Tn+1-Tn=
>0,故Tn是关于n的增函数,
显然满足 Tn≥T1=
.
再由Sn=2an-2n(n∈N+),可得 sn+1=2an+1-2(n+1),
∴sn+1-Sn =2an+1-2an-2,即 an+1=2an +2,故有 an+1+2=2(an +2 ),
故数列{an+2}是以4为首项,以2为公比的等比数列.
(2)由(1)知,an +2=4×2n-1,∴bn=log2(an+2)=log2(4×2n-1 )=n+1,
∴
bn |
an+2 |
n+1 |
4×2n?1 |
n+1 |
2n+1 |
∴数列{
bn |
an+2 |
2 |
22 |
3 |
23 |
4 |
24 |
n+1 |
2n+1 |
∴
1 |
2 |
2 |
23 |
3 |
24 |
4 |
25 |
n+1 |
2n+2 |
①-②可得
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+1 |
2n+2 |
1 |
2 |
| ||||
1?
|
n+1 |
2n+2 |
3 |
4 |
n+3 |
2n+2 |
故Tn=
3 |
2 |
n+3 |
2n+1 |
3 |
2 |
n+4 |
2n+2 |
n+2 |
2n+2 |
显然满足 Tn≥T1=
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询