阅读下列材料:在公式(a+1)2=a2+2a+1中,当a分别取1、2、3、4、…n可得以下等式:(1+1)2=12+2×1+1;

阅读下列材料:在公式(a+1)2=a2+2a+1中,当a分别取1、2、3、4、…n可得以下等式:(1+1)2=12+2×1+1;(2+1)2=22+2×2+1;(3+1)... 阅读下列材料:在公式(a+1)2=a2+2a+1中,当a分别取1、2、3、4、…n可得以下等式:(1+1)2=12+2×1+1; (2+1)2=22+2×2+1; (3+1)2=32+2×3+1;(4+1)2=42+2×4+1;…(n+1)2=n2+2n+1(1)将这n个等式的左右两边分别相加,可以推导出求和公式:1+2+3+…+n=______(2)若(a+1)3=a3+3a2+3a+1,仿照上述方法,求12+22+32+…+n2. 展开
 我来答
门徒SS75T
推荐于2016-10-27 · 超过66用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:129万
展开全部
(1)把已知的式子左右分别相加得:(1+1)2+(2+1)2+(3+1)2+…+(n+1)2=12+22+32+…+n2+2(1+2+…+n)+n,
即22+32+42+…+(n+1)2=12+22+32+…+n2+2(1+2+…+n)+n,
则(n+1)2=1+2(1+2+3+…+n)+n,
即2(1+2+3+4+…+n)=n2+n
∴1+2+3+4+5+6+…+n=
n(n+1)
2

(2)在立方公式中,取b=1得(a+1)3-a3=3a2+3a+1,
依次取a=1,2,3,…,n-1,n得
23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…(n+1)3-n3=3×n2+3n+1,
将以上n个式子相加,得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
∴12+22+32+…+n2=
(n+1)3?1?3(1+2+3+…+n)?n
3
=
n(n+1)(2n+1)
6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式