已知数列{an}中,a1=1,an+1=anan+3,(n∈N*)(1)求数列{an}的通项公式an,(2)若数列{bn}满足bn=(3
已知数列{an}中,a1=1,an+1=anan+3,(n∈N*)(1)求数列{an}的通项公式an,(2)若数列{bn}满足bn=(3n-1)n2nan,数列{bn}的...
已知数列{an}中,a1=1,an+1=anan+3,(n∈N*)(1)求数列{an}的通项公式an,(2)若数列{bn}满足bn=(3n-1)n2nan,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
展开
1个回答
展开全部
(1)∵数列{an}中,a1=1,an+1=
,(n∈N*)
∴
=
=
+1,搜正
∴让培
+
=3(
+
),
∴
+
=(
+
)?3n-1=
.
∴an=
.(4分)世滑悔
(2)∵
,bn=(3n-1)
an,
∴bn=(3n?1)?
?
=n?(
)n?1,
∴Tn=1?1+2?(
)+3?(
)2+…+n?(
)n?1,①
Tn=1?
+2?(
an |
an+3 |
∴
1 |
an+1 |
an+3 |
an |
3 |
an |
∴让培
1 |
an+1 |
1 |
2 |
1 |
an |
1 |
2 |
∴
1 |
an+1 |
1 |
2 |
1 |
a1 |
1 |
2 |
3n |
2 |
∴an=
2 |
3n?1?1 |
(2)∵
2 |
3n?1?1 |
n |
2n |
∴bn=(3n?1)?
n |
2n |
2 |
3n?1 |
1 |
2 |
∴Tn=1?1+2?(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |