设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2(1)求证:f

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2(1)求证:f(x)是奇函数;(2)试问:在-n≤x≤n时... 设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2(1)求证:f(x)是奇函数;(2)试问:在-n≤x≤n时(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.(3)解关于x的不等式12f(bx2)?f(x)≥12f(b2x)?f(b),(b>0). 展开
 我来答
闯顶笑见鸽1l
2014-08-25 · 超过59用户采纳过TA的回答
知道答主
回答量:160
采纳率:0%
帮助的人:60.4万
展开全部
(1)∵函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),设x=y=0可求得f(0)=0.
设y=-x,则f(0)=f(x)+f(-x),即f(-x)=-f(x),所以f(x)为奇函数.
(2)由xf(x)<0,可得当x>0时,f(x)<0;当x<0时,f(x)>0.
任取x1<x2,则x2-x1>0,又f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1),
所以f(x2)-f(x1)=f(x2-x1)<0,所以f(x)在[-n,n]上为减函数.
那么函数最大值为f(-n),最小值为f(n),且f(-n)=-nf(1)=2n,f(n)=nf(1)=-2n,
所以函数最大值为2n,所以函数最小值为-2n.
(3)由题设可知
1
2
f(bx2)+f(b)>
1
2
f(b2x)+f(x)
,即
1
2
f(bx2)+
1
2
f(b)+
1
2
f(b)>
1
2
f(b2x)+
1
2
f(x)+
1
2
f(x)

可化为
1
2
f(bx2+b+b)>
1
2
f(b2x+x+x)
,即f(bx2+b+b)>f(b2x+x+x).
∵f(x)在R上为减函数,∴bx2+2b<b2x+2x,即bx2-(b2+2)+2b<0,即(bx-2)(x-b)<0.
①当
2
b
>b
,即 0<b<
2
,不等式的解集为 {x|b<x<
2
b
},
②当
2
b
<b,即 b>
2
,则不等式的解集为{x|
2
b
<x<b
},
③当
2
b
=b,即b=
2
,则不等式无解,即解集为?.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式