
数学,,,问题呀呀呀呀呀呀呀呀
1个回答
展开全部
证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量代换).
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
同理可得∠BAC=60°.
∴△ABC中,AB=BC(等角对等边).
∴△ABC是等边三角形(等边三角形的判定)
∴FA=EC(等量代换).
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
同理可得∠BAC=60°.
∴△ABC中,AB=BC(等角对等边).
∴△ABC是等边三角形(等边三角形的判定)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询