左右极限存在且相等是极限存在的充要条件是什么?

 我来答
帐号已注销
2021-02-14 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

对的,函数的左右极限存在且相等是函数极限存在的充要条件,正推反推都是对的。实心处只有左极限或者右极限,但是有极限要求在有极限那一点要连续才能说有极限,不相等可以分别说有左极限或者右极限,但就是不能说那一点有极限。

|证明

x趋于x0时f(x)极限存在等价于,对于任意给出的一个正数ε,总存在一个正数δ,使得当x满足

|x-x0|<δ时,|f(x)-A|<ε会成立

左极限存在即总存在一个正数δ,使得当x满足

|x-x0|<δ时,f(x)-A<ε

右极限存在即总存在一个正数δ,使得当x满足

|x-x0|<δ时,A-f(x)<ε

所以左右极限都存在时,总存在一个正数δ,使得当x满足

|x-x0|<δ时

-εx0时极限存在的充要条件是左极限,右极限均存在并相等

扩展资料:

因为ε是任意小的正数,所以ε/2 、3ε 、ε2等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。

N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

参考资料来源:百度百科-极限

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式