如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条
如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直线翻折,使OA与y轴正半轴的OC重合、点B的对应点...
如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直线翻折,使OA与y轴正半轴的OC重合、点B的对应点为点D,连接AD交OB于点E.(1)求AD所在直线的解析式:(2)连接BD,若动点M从点A出发,以每秒2个单位的速度沿射线A0运动,线段AM的垂直平分线交直线AD于点N,交直线BD子Q,设线段QN的长为y(y≠0),点M的运动时间为t秒,求y与t之问的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,连接MN,当t为何值时,直线MN与过D、E、O三点的圆相切,并求出此时切点的坐标.
展开
展开全部
(1)解:∵△OAB≌△OCD,
∴OC=OA=4,AB=CD=2,
∴D(2,4),
∵直线AD过A(4,0)和D(2,4),
∴设直线AD的解析式是y=kx+b,
代入得:
,
解得:k=-2,b=8,
∴AD所在直线的解析式是y=-2x+8;
(2)解:∵D(2,4),B(4,2),
∴设直线BD的解析式是y=ax+c
代入得:
,
解得:a=-1,c=6,
∴直线BD的解析式是y=-x+6,
∵直线NQ垂直平分AM,
∴NH⊥AM,AH=HM=
AM=
×2t=t,
分为两种情况:①当0<t<2时,如图a,
∵OH=4-t,
∴H(4-t,0),
∴点Q、N的横坐标是4-t,
∴N的纵坐标是-2(4-t)+8=2t,
Q的纵坐标是-(4-t)+6=t+2,
∴NQ=(t+2)-2t=2-t,
即y=2-t(0<t<2);
②当t>2时,同法可求y=t-2,如图b
综合上述:y=
;
(3)解:分为两种情况:①当AM<4时,如图c,
过D作DF⊥OA于F,则CD∥OF,CD=OF=2,
∵OA=4,
∴OF=AF=2,
∵DF⊥OA,
∴OD=AD,∠ODC=∠DOF=∠DAF,
∵△OAB≌△OCD,
∴∠COD=∠AOB,
∵∠COD+∠AOD=90°,
∴∠OED=∠AOB+∠OAD=90°,
∴OD为经过D、E、O三点的圆的直径,OD的中点O′为圆心.
∵在Rt△OCD中,OD2=CD2+OC2,
∴OD=2
∴OC=OA=4,AB=CD=2,
∴D(2,4),
∵直线AD过A(4,0)和D(2,4),
∴设直线AD的解析式是y=kx+b,
代入得:
|
解得:k=-2,b=8,
∴AD所在直线的解析式是y=-2x+8;
(2)解:∵D(2,4),B(4,2),
∴设直线BD的解析式是y=ax+c
代入得:
|
解得:a=-1,c=6,
∴直线BD的解析式是y=-x+6,
∵直线NQ垂直平分AM,
∴NH⊥AM,AH=HM=
1 |
2 |
1 |
2 |
分为两种情况:①当0<t<2时,如图a,
∵OH=4-t,
∴H(4-t,0),
∴点Q、N的横坐标是4-t,
∴N的纵坐标是-2(4-t)+8=2t,
Q的纵坐标是-(4-t)+6=t+2,
∴NQ=(t+2)-2t=2-t,
即y=2-t(0<t<2);
②当t>2时,同法可求y=t-2,如图b
综合上述:y=
|
(3)解:分为两种情况:①当AM<4时,如图c,
过D作DF⊥OA于F,则CD∥OF,CD=OF=2,
∵OA=4,
∴OF=AF=2,
∵DF⊥OA,
∴OD=AD,∠ODC=∠DOF=∠DAF,
∵△OAB≌△OCD,
∴∠COD=∠AOB,
∵∠COD+∠AOD=90°,
∴∠OED=∠AOB+∠OAD=90°,
∴OD为经过D、E、O三点的圆的直径,OD的中点O′为圆心.
∵在Rt△OCD中,OD2=CD2+OC2,
∴OD=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|