数列{an}是等差数列且a2=4,a4=5,数列{bn}的前n项和为Sn,且2Sn=3bn-3(n∈N*)(Ⅰ)求数列{an},{bn}
数列{an}是等差数列且a2=4,a4=5,数列{bn}的前n项和为Sn,且2Sn=3bn-3(n∈N*)(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{anbn...
数列{an}是等差数列且a2=4,a4=5,数列{bn}的前n项和为Sn,且2Sn=3bn-3(n∈N*)(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{anbn}的前n项和为Tn.
展开
展开全部
(Ⅰ)∵数列{an}是等差数列且a2=4,a4=5,
∴
,解得a1=
,d=
,
∴an=
+(n-1)×
=
+3.
∵2Sn=3bn-3,①
∴2Sn-1=3bn-1-3,n≥2,②
①-②,得2bn=3bn-3bn-1,
∴
=3,
又2b1=3b1-3,解得b1=3,
∴{bn}是以3为首项,3为公比的等比数列,
∴bn=3n.
(Ⅱ)∵anbn=(
+3)?3n=
?3n,
∴Tn=
?3+
?32+…+
?3n,①
3Tn=
?32+
?33+…+
?3n+1,②
①-②,-2Tn=
?3+
(32+33+…+3n)-
?3n+1
=
+
∴
|
7 |
2 |
1 |
2 |
∴an=
7 |
2 |
1 |
2 |
n |
2 |
∵2Sn=3bn-3,①
∴2Sn-1=3bn-1-3,n≥2,②
①-②,得2bn=3bn-3bn-1,
∴
bn |
bn?1 |
又2b1=3b1-3,解得b1=3,
∴{bn}是以3为首项,3为公比的等比数列,
∴bn=3n.
(Ⅱ)∵anbn=(
n |
2 |
6+n |
2 |
∴Tn=
7 |
2 |
8 |
2 |
6+n |
2 |
3Tn=
7 |
2 |
8 |
2 |
6+n |
2 |
①-②,-2Tn=
7 |
2 |
1 |
2 |
6+n |
2 |
=
21 |
2 |