
已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根. (1)求{an}的通项公式
已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{an}的通项公式;(2)求数列{an/2的n次方}的前n项和....
已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.
(1)求{an}的通项公式;
(2)求数列{an/2的n次方}的前n项和. 展开
(1)求{an}的通项公式;
(2)求数列{an/2的n次方}的前n项和. 展开
展开全部
因为a2和a4是方程的两个根,故a2=2,a4=3,从而公差为0.5,通项公式是an=1+0.5n
展开全部
解:(1)方程x2-5x+6=0的根为2,3.又{an}是递增的等差数列,
故a2=2,a4=3,可得2d=1,d=
1
2
,
故an=2+(n-2)×
1
2
=
1
2
n+1,
(2)设数列{
an
2n
}的前n项和为Sn,
Sn=
a1
21
+
a2
22
+
a3
23
+…+
an-1
2n-1
+
an
2n
,①
1
2
Sn=
a1
22
+
a2
23
+
a3
24
+…+
an-1
2n
+
an
2n+1
,②
①-②得
1
2
Sn=
a1
2
+d(
1
22
+
1
23
+
1
24
+…+
1
2n
)-
an
2n+1
=
3
2
2
+
1
2
×
1
4
(1-
1
2n-1
)
1-
1
2
-
an
2n+1
,
解得Sn=
3
2
+
1
2
(1-
1
2n-1
)-
n+2
2n+2
=2-
n+4
2n+1
.
故a2=2,a4=3,可得2d=1,d=
1
2
,
故an=2+(n-2)×
1
2
=
1
2
n+1,
(2)设数列{
an
2n
}的前n项和为Sn,
Sn=
a1
21
+
a2
22
+
a3
23
+…+
an-1
2n-1
+
an
2n
,①
1
2
Sn=
a1
22
+
a2
23
+
a3
24
+…+
an-1
2n
+
an
2n+1
,②
①-②得
1
2
Sn=
a1
2
+d(
1
22
+
1
23
+
1
24
+…+
1
2n
)-
an
2n+1
=
3
2
2
+
1
2
×
1
4
(1-
1
2n-1
)
1-
1
2
-
an
2n+1
,
解得Sn=
3
2
+
1
2
(1-
1
2n-1
)-
n+2
2n+2
=2-
n+4
2n+1
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询