在正方体ABCD-A1B1C1D1中,E,F分别为AA1,A1D1的中点,求EF和面A1C1所成的角

 我来答
书中某页

2015-04-09 · TA获得超过18.2万个赞
知道大有可为答主
回答量:1.8万
采纳率:92%
帮助的人:1301万
展开全部

因为AA1⊥平面A1C1,所以:EF在平面A1C1内的射影为A1F

则∠A1FE就是EF与平面A1C1所成的角

又E、F分别是AA1,A1D1的中点,则:

在Rt△A1EF中,A1E=A1F=a/2

所以:∠A1FE=45°

即EF与平面A1C1所成的角为45°.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式