解方程,速度!!!!!急!!!高手来帮帮我
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)=1999/2000...
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)=1999/2000
展开
3个回答
展开全部
原式=1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
...
原式可化为
[1/(x+1)-1/(x+2)]+[1/(x+2)-1/(x+3)]+...+1/(x+100)=1999/2000;1/(x+1)=1999/2000,X=1/1999
原式可化为
[1/(x+1)-1/(x+2)]+[1/(x+2)-1/(x+3)]+...+1/(x+100)=1999/2000;1/(x+1)=1999/2000,X=1/1999
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询