求详细解答过程
展开全部
解f'(x)
=[x×(x-a1)(x-a2)....(x-a8)]'
=x'(x-a1)(x-a2)....(x-a8)+x×[(x-a1)(x-a2)....(x-a8)]'
=(x-a1)(x-a2)....(x-a8)+x×[(x-a1)(x-a2)....(x-a8)]'
则f(0)=(0-a1)(0-a2).....(0-a8)+0×[(x-a1)(x-a2)....(x-a8)]'
=-a1*(-a2)*.....(-a8)
=a1a2.....a8
=(a1a8)(a2a7)(a3a6)(a4a5)
=(a2a8)^4
=(8)^4
=2^12
故选C
=[x×(x-a1)(x-a2)....(x-a8)]'
=x'(x-a1)(x-a2)....(x-a8)+x×[(x-a1)(x-a2)....(x-a8)]'
=(x-a1)(x-a2)....(x-a8)+x×[(x-a1)(x-a2)....(x-a8)]'
则f(0)=(0-a1)(0-a2).....(0-a8)+0×[(x-a1)(x-a2)....(x-a8)]'
=-a1*(-a2)*.....(-a8)
=a1a2.....a8
=(a1a8)(a2a7)(a3a6)(a4a5)
=(a2a8)^4
=(8)^4
=2^12
故选C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询