2个回答
展开全部
n阶矩阵A的逆矩阵行列式的值等于A的行列式的值分之一,这是逆矩阵的一个基本性质。
如果一个矩阵可逆,它的逆矩阵必然唯一,事实上。设A可逆,B,C都是A的逆,由矩阵可逆的定义知道
AB=BA=E,AC=CA=E
所以 B=BE=B(AC)=(BA)C=EC=C
故A若有逆,必然唯一。
扩展资料:
逆矩阵的性质:
性质1:如果A、B是两个同阶可逆矩阵,则AB也可逆,且(AB)–1=B–1A–1。
性质2:如果矩阵A可逆,则A的逆矩阵A–1也可逆,且(A–1)–1=A。
性质3:如果A可逆,数k≠0,则kA也可逆,且(kA)–1=A–1。
性质4:如果矩阵A可逆,则A的转置矩阵AT也可逆,且(AT)–1=(A–1)T。
性质5::矩阵可逆当且仅当它是满秩矩阵。
参考资料来源:百度百科-逆矩阵
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询