设A为正交阵,且〔A〕=-1,证明b=-1是A的特征值 10

 我来答
白雪忘冬
高粉答主

2019-04-23 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376629

向TA提问 私信TA
展开全部

A正交,则A的特征值的模是1又detA=-1=所有特征值的乘积,共轭复特征值成对出现所以必有特征值是-1。

设A的特征值为λ,有Aα = λα (α≠0),(A^T)A=E

等式左边乘于A的转置A^T,右边乘于α ^T,得α(α ^T) = λ(A^T)α(α ^T),取行列式得:

|α(α ^T)| = λ |(A^T)| |α(α ^T)|,又|A^T|=detA=-1,故λ=-1

方阵A为正交阵的充分必要条件是A的行向量或列向量是标准正交向量

扩展资料

1、正交矩阵一定是对实矩阵而言的。

2、正交矩阵不一定对称,也不一定可以对角化。

3、正交矩阵的特征值为正负1或者cos(t)+isin(t),换句话说特征值的模长为1。

4、正交矩阵的行列式肯定是正负1,正1是叫第一类,负1时叫第二类。

5、对称的正交矩阵不一定是对角的,只是满足A'=A=A^{-1},例如副对角线全为1,其余元素都为零的那个方阵就是这种类型。

6、正交矩阵乘正交矩阵还是正交矩阵,但是正交矩阵相加相减不一定还是正交矩阵。

7、正交矩阵的每一个行(列)向量都是模为1的,并且任意两个行(列)向量是正交的,即所有的行(列)向量组成R^n的一组标准正交基

8、正交矩阵每个元素绝对值都小于等于1,如果有一个元素为1,那么这个元素所在的行列的其余元素一定都为零。

9、一个对称矩阵,如果它的特征值都为1或者-1,那么这个矩阵一定是对称的正交矩阵。

10、如果b是一个n维单位实列向量,则E_n-2bb'是一个对称正交矩阵.因为E_n-2bb'的特征值为1(n-1重),-1(1重),同时还是一个对阵矩阵。

参考资料来源:百度百科-正交矩阵

隰紫云的紫竹苑
推荐于2018-03-07 · TA获得超过564个赞
知道小有建树答主
回答量:414
采纳率:0%
帮助的人:406万
展开全部
A为正交阵,即A^T A=E,设A的转置为A'
有 | E + A | = | A'A + A |
= |A|| A' +E|
=-| (A + E)' |
=-| E + A |
所以 | E + A | = 0
就是说 | A - (-E)| =0
这就说明-1是他的一个特征根
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小鑫没了蜡笔的资料
2020-04-03
知道答主
回答量:2
采纳率:0%
帮助的人:1155
展开全部
先证明因为A为正交矩阵,A的特征值为-1或1,设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量,即有Ax=入x,且x≠0.两边取转置得X^TA^T=入x^T所以x^TA^TAx=入^2x^Tx,因为A是正交矩阵所以A^TA=E,所以x^Tx=入^2x^Tx,由x≠0知x^Tx是一个非零的数,故入^2=1,所以入=1或-1。
因为A等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即=-1是A的特征值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
贾元牧慈
2019-10-18 · TA获得超过3665个赞
知道大有可为答主
回答量:3114
采纳率:26%
帮助的人:243万
展开全部
因为特征值都大于零所以a的行列式deta=1,所以a*=deta*(a^-1)=a^-1=a^t
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式