非常急,求助学霸帮帮忙做一下这个题。设v是数域p上所有n阶对称矩阵,关于矩阵的加法与与数乘构成的线
非常急,求助学霸帮帮忙做一下这个题。设v是数域p上所有n阶对称矩阵,关于矩阵的加法与与数乘构成的线性空间。令V₁={A∈V∣tr(A)=0},V₂...
非常急,求助学霸帮帮忙做一下这个题。设v是数域p上所有n阶对称矩阵,关于矩阵的加法与与数乘构成的线性空间。令V₁={A∈V∣tr(A)=0},V₂={λEn∣λ∈P}.证明①:V₁,V₂都是V的子空间。②分别求出 V₁,V₂的一组基与维数。③V=V₁⊕V₂
展开
展开全部
1和3直接用定义证明(3先验证V=V1+V2,然后证明拆分方式的唯一性)
2是线性方程组的直接应用,显然En是V2的基,所以V2是一维空间
利用3可知V1是n(n+1)/2-1维空间,当然也可以用线性方程组理论,V1的约束方程只有一个,所以维数是n(n+1)/2-1
至于V1的基,对称矩阵由上三角元素唯一确定,所以取遍e_ie_j^T+e_je_i^T(i<j)可以得到V1里的对角元为0的子空间的基,这里e_i表示单位阵En的第i列,然后再取遍对角阵e_1e_1^T-e_ie_i^T(i>1)就行了,组合起来正好构成V1的基(这些就是通过解方程a11+a22+...+ann=0解出来的,当然完全可以给其他形式的解)
2是线性方程组的直接应用,显然En是V2的基,所以V2是一维空间
利用3可知V1是n(n+1)/2-1维空间,当然也可以用线性方程组理论,V1的约束方程只有一个,所以维数是n(n+1)/2-1
至于V1的基,对称矩阵由上三角元素唯一确定,所以取遍e_ie_j^T+e_je_i^T(i<j)可以得到V1里的对角元为0的子空间的基,这里e_i表示单位阵En的第i列,然后再取遍对角阵e_1e_1^T-e_ie_i^T(i>1)就行了,组合起来正好构成V1的基(这些就是通过解方程a11+a22+...+ann=0解出来的,当然完全可以给其他形式的解)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |