二重积分中的极坐标中上下限怎么确定
楼主的问题很有代表性,但是要全面、细致、正确地回答楼主的问题,
是一篇厚厚的论文,至少也得编写出数以百计的精美课件。
.
下面的解答,只能给出大致的规律:
.
1、先写出积分区域的极坐标方程,并草绘(graph-sketching)出积分区域。
.
2、通常的积分方法,都是先对径向积分,再对角度积分,难度会减小很多。
.
3、一些积分的被积函数看似极坐标方便,采用直角坐标,也能得心应手,
请参看第一张图片示例。
.
4、一些积分的被积函数明显极坐标方便,就不必迂回曲折,直接了当使用
极坐标,请参看第二张、第四张、第五张、第六张图片示例。
.
5、一些积分被积函数,似乎与极坐标无关,好像只能运用直角坐标系积分,
结果却是运用极坐标积分快捷,请参看第三张图片示例。
.
6、一些积分被积函数显得积分似乎困难重重,但是利用了对称性、奇偶性
之后,却峰回路转,请参看第七张、第八张图片示例。
.
其他情况不一而足,举不胜举,在此只能挂一漏万。
若有疑问,欢迎追问,欢迎讨论,有问必答,有疑必释。
.
每张图片,均可点击放大,图片会非常清晰。
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
广告
要确定二重积分的积分限,首先要绘制出封闭的积分区域。概况各类情况,无外乎是直角坐标系下和极坐标系下的区域问题。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
1、直角坐标系下:
①Y型积分区域:
②X型积分区域:
③积分区域具体表示如下:
2、极坐标下的二重积分问题:
扩展资料:
当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如:二重积分
其中
表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
角度上下限的判断:若是曲线与直线所构成的积分区域,上限则是曲线与直线相交的交点与原点的连线的角度 下限以情况而定。若是直线与直线则角度为倾斜角。
极径上下限的判断:从原点引一条射线(射线角度在积分区域范围内)若在积分区域内交与两条曲线,则离原点较远(后交的曲线)的曲线则为上限,反之较远的为下限,若在积分区域内只交到一条曲线,则此条曲线为上限,下限为0,若在积分区域内没有相交的曲线,则上限为积分区域在x轴上的边界,下限为零。
扩展资料
1、二重积分是否有意义,要看被积函数的量纲,由量纲决定是否有物理意义。
2、数学老师出题,一般不会考虑什么物理模型、量纲,一般均无明确意义。
3、被积函数如果是1,而且1不带任何单位,那二重积分就是算总面积。
4、只要被积函数不是1,二重积分没有明确意义。
2015-08-11