一道高中文科数学题
已知数列{an},其前n项和Sn满足S(n+1)=2µSn+1,(µ是大于0的常数)。切a1=1,a3=4,(1)求µ的值(2)求数列...
已知数列{an},其前n项和Sn满足S(n+1)=2µSn +1 ,(µ是大于0的常数)。切a1=1,a3=4,
(1)求µ的值
(2)求数列{an}的通项公式
(3)设数列{n×an}的前n项和为Tn,试比较(Tn)/2与Sn的大小 展开
(1)求µ的值
(2)求数列{an}的通项公式
(3)设数列{n×an}的前n项和为Tn,试比较(Tn)/2与Sn的大小 展开
展开全部
(1)当n=1时,S2=2µ*S1+1=2µ*a1+1,S2= 2µ+1
当n=2时,S3=2µ*S2+1,则S2+a3=2µ*S2+1
2µ+1+4=2µ*(2µ+1)+1
解得µ=1(µ=-1舍去)
(2)
S(n+1)=2Sn +1
∴S(n+1)+1=2(Sn +1)
∴数列{Sn +1}是首项为S1+1=2,公比为2的等比数列
∴Sn +1=2*2^(n-1)=2^n
∴Sn=(2^n)-1
∴an=Sn-S(n-1)
=(2^n)-1-2^(n-1)+1
=2^(n-1)
数列{an}的通项公式2^(n-1)
(3)n×an=n2^(n-1)
Tn=2Tn-Tn=(1*2+2*2²+…+(n-1)*2^(n-1)+n*2^n)-(1*1+2*2+3*2²+…+n*2^(n-1))
=-(1+2+2²+…+2^(n-1))+n*2^n
=1-2^n+n*2^n
∴Tn/2=1/2+(n-1)*2^(n-1)
∴Tn/2-Sn=1/2+(n-1)*2^(n-1)-(2^n)+1
=[3+(n-3)*2^n]/2
∴当n=1或2时,Tn/2-Sn=-1/2<0
当n=3时,Tn/2-Sn=3/2>0
因为当n≥4时,Tn/2-Sn是增数列。所以Tn/2-Sn>T3/2-S3>0
综上
当n=1或2时,(Tn)/2<Sn
当n≥3时,(Tn)/2>Sn
当n=2时,S3=2µ*S2+1,则S2+a3=2µ*S2+1
2µ+1+4=2µ*(2µ+1)+1
解得µ=1(µ=-1舍去)
(2)
S(n+1)=2Sn +1
∴S(n+1)+1=2(Sn +1)
∴数列{Sn +1}是首项为S1+1=2,公比为2的等比数列
∴Sn +1=2*2^(n-1)=2^n
∴Sn=(2^n)-1
∴an=Sn-S(n-1)
=(2^n)-1-2^(n-1)+1
=2^(n-1)
数列{an}的通项公式2^(n-1)
(3)n×an=n2^(n-1)
Tn=2Tn-Tn=(1*2+2*2²+…+(n-1)*2^(n-1)+n*2^n)-(1*1+2*2+3*2²+…+n*2^(n-1))
=-(1+2+2²+…+2^(n-1))+n*2^n
=1-2^n+n*2^n
∴Tn/2=1/2+(n-1)*2^(n-1)
∴Tn/2-Sn=1/2+(n-1)*2^(n-1)-(2^n)+1
=[3+(n-3)*2^n]/2
∴当n=1或2时,Tn/2-Sn=-1/2<0
当n=3时,Tn/2-Sn=3/2>0
因为当n≥4时,Tn/2-Sn是增数列。所以Tn/2-Sn>T3/2-S3>0
综上
当n=1或2时,(Tn)/2<Sn
当n≥3时,(Tn)/2>Sn
展开全部
(1)当n=1时,a1=S1,则S2=2µ*a1+1,S2=2µ+1 (1)
当n=2时,S3=2µ*S2+1,则S2+4=2µ*S2+1 (2)
将 (1)带入(2) 得µ=1
当n=2时,S3=2µ*S2+1,则S2+4=2µ*S2+1 (2)
将 (1)带入(2) 得µ=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)由题意,S2=2µS1+1①
S3=2µS2+1 ②
由①得a2=2µa1+1-a1
①-② 得a3=2µa2
=2µ(2µa1+1-a1)
=4µ^2=4
µ=1或µ=-1(舍去)
(2)当n≥2时
S(n+1)=2Sn+1①
Sn=2S(n-1)+1②
①-② 得S(n+1)-Sn=2[Sn-S(n-1)]
即a(n+1)=2an
当n=1时也成立
所以{an}是首项为1,公比为2的等比数列
an=2^(n-1)
(3)用错位相减法得Tn-2Tn=1*1+{2*[1-2^(n-1)]}/(1-2)-n*2^n=2^n-1-n*2^n
所以Tn/2=(n-1)*2^(n-1)+1/2
Sn=2^(n+1)-2
当n≤4时Sn>Tn/2
当n >4时Tn/2>Sn
S3=2µS2+1 ②
由①得a2=2µa1+1-a1
①-② 得a3=2µa2
=2µ(2µa1+1-a1)
=4µ^2=4
µ=1或µ=-1(舍去)
(2)当n≥2时
S(n+1)=2Sn+1①
Sn=2S(n-1)+1②
①-② 得S(n+1)-Sn=2[Sn-S(n-1)]
即a(n+1)=2an
当n=1时也成立
所以{an}是首项为1,公比为2的等比数列
an=2^(n-1)
(3)用错位相减法得Tn-2Tn=1*1+{2*[1-2^(n-1)]}/(1-2)-n*2^n=2^n-1-n*2^n
所以Tn/2=(n-1)*2^(n-1)+1/2
Sn=2^(n+1)-2
当n≤4时Sn>Tn/2
当n >4时Tn/2>Sn
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很高兴为你解答问题!
这道题可以这样计算:
首先,因为已经知道了a1=1,a3=4。设一个a2的值就可以带入等式S(n+1)=2µSn +1 中计算,把S1=1,S2=1+a2,S3=5+a2 都带进去就可以得到两个方程,联立可以解µ的值为1.
然后就是把刚刚解出的值带入关于S的等式中,发现这个等式可以推导出S(n+1)-S(n)是一个等比数列,这样把关于S的等比数列求出来,再带入a的数列中就可以求出a的通项公式了。
这道题可以这样计算:
首先,因为已经知道了a1=1,a3=4。设一个a2的值就可以带入等式S(n+1)=2µSn +1 中计算,把S1=1,S2=1+a2,S3=5+a2 都带进去就可以得到两个方程,联立可以解µ的值为1.
然后就是把刚刚解出的值带入关于S的等式中,发现这个等式可以推导出S(n+1)-S(n)是一个等比数列,这样把关于S的等比数列求出来,再带入a的数列中就可以求出a的通项公式了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询