如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线吗

 我来答
教育小百科达人
推荐于2019-11-17 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:462万
展开全部

是的,这个是一个性质定理,如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。这个定理可以在证明题中直接使用。

因为一条直线垂直与一个平面,所以这条直线垂直于这个平面内两条相交直线。则与这条直线平行的直线也垂直于这个平面内这两条相交直线。所以可以证明一条直线垂直于一个平面,能推出与这条直线平行的直线也垂直于这个平面。

平行轴定理、伸展定则一样,垂直轴定理可以用来计算许多不同形状的物体的转动惯量

刚体的一般性垂直轴定理为求三度刚体,特别是圆柱体和旋转体的转动惯量提供了一种简单而又有力的计算工具。对于轴向转动惯量已知的旋转体,为求横向转动惯量,该定理总是最简单的计算程序。

对于正多面体,只要当由对称性使得  时,刚体的一 般性垂直轴定理提供的计算程序也是最简单的。


扩展资料:

假设OXYZ座标系统的 X-轴与 Y-轴都包含与平行于此薄片,而 Z-轴垂直于薄片的面。

 与  分别代表薄片对于 X-轴与 Y-轴的转动惯量.那么,薄片对于 Z-轴的转动惯量为垂直轴定理、平行轴定理、与伸展定则可以用来计算许多不同形状的物体的转动惯量。

任何实际存在的刚体都有厚度;不可能有零厚度的刚体。参考右图,假设这刚体是一块很薄的薄片,厚度 是均匀的,密度也是均匀的。

设定薄片的面与 XY-面共平面 [2]  。那么,刚体对于 X-轴、Y-轴、与 Z-轴的转动惯量分别为  , , 。

由于厚度超小于薄片的面尺寸,我们可以忽略z对于积分的贡献.因此, ,所以,

参考资料:百度百科——垂直轴定理

忙碌枉然
高粉答主

2018-03-13 · 忙忙碌碌也是枉然-赵文才
忙碌枉然
采纳数:19057 获赞数:93354

向TA提问 私信TA
展开全部
因为一条直线垂直与一个平面
所以这条直线垂直于这个平面内两条相交直线
则与这条直线平行的直线也垂直于这个平面内这两条相交直线
所以可以证明一条直线垂直于一个平面,能推出与这条直线平行的直线也垂直于这个平面
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shizhaocai2012
推荐于2018-07-05
知道答主
回答量:16
采纳率:87%
帮助的人:1.6万
展开全部

是的,这个是一个性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。这个定理可以在证明题中直接使用网页链接

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
迷彩战狼1314
推荐于2018-03-13 · 超过22用户采纳过TA的回答
知道答主
回答量:103
采纳率:0%
帮助的人:83.1万
展开全部
是的。。。。平面图形和直线是垂直关系,那么直线就垂直与平面内的所有直线。这是一个定理。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活达人唐鲜生
2023-07-14 · TA获得超过122个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:75.8万
展开全部
是的,如果一条直线垂直于一个平面,则它垂直于这个平面内的所有直线。根据几何学的定义,两条直线垂直的条件是它们的斜率的乘积为-1。当一条直线垂直于一个平面时,它与该平面内的任意直线都会形成直角,因此满足斜率乘积为-1的条件,即两条直线互相垂直。所以,一条垂直于一个平面的直线也必然垂直于该平面内的其他直线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(14)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式