第5题,怎么做,数学课题
5个回答
展开全部
[a+1 - (4a-5)/(a-1) ] /[ 1/(a-1) - 2/(a^2-a) ]
=[ (a^2-4a+4)/(a-1) ] /[ (a-2a)/(a^2-a) ]
=[ (a-2)^2/(a-1) ] /{ [a(a-2)]/[(a(a-1) ] }
=[ (a-2)^2/(a-1) ] / [(a-2)/(a-1) ]
=[ (a-2)^2/(a-1) ] . [(a-1)/(a-2) ]
=a-2
=[ (a^2-4a+4)/(a-1) ] /[ (a-2a)/(a^2-a) ]
=[ (a-2)^2/(a-1) ] /{ [a(a-2)]/[(a(a-1) ] }
=[ (a-2)^2/(a-1) ] / [(a-2)/(a-1) ]
=[ (a-2)^2/(a-1) ] . [(a-1)/(a-2) ]
=a-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
5、原式
=[(a+1)(a-1)/(a-1) -(4a-5)/(a-1)] ÷[a/a(a-1) -2/a(a-1)]
=[(a²-1-4a+5)/(a-1)] ÷[(a-2)/a(a-1)]
=[(a-2)²/(a-1)]•[a(a-1)/(a-2)]
=a(a-2)
=a²-2a
=(-1)²-2×(-1)
=1+2
=3
=[(a+1)(a-1)/(a-1) -(4a-5)/(a-1)] ÷[a/a(a-1) -2/a(a-1)]
=[(a²-1-4a+5)/(a-1)] ÷[(a-2)/a(a-1)]
=[(a-2)²/(a-1)]•[a(a-1)/(a-2)]
=a(a-2)
=a²-2a
=(-1)²-2×(-1)
=1+2
=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式={【(a+1)(a-1)-(4a-5)】/a-1}÷(a-2)/a(a-1)
=【(a²-1-4a+5)/a-1】÷(a-2)/a(a-1)
=(a²-4a+4)/a-1÷(a-2)/a(a-1)
=(a-2)²/a-1×a(a-1)/(a-2)
=a(a-2)
=a²-2a
当a=-1时
原式=(-1)²-2×(-1)=1+2=3
采纳呗
=【(a²-1-4a+5)/a-1】÷(a-2)/a(a-1)
=(a²-4a+4)/a-1÷(a-2)/a(a-1)
=(a-2)²/a-1×a(a-1)/(a-2)
=a(a-2)
=a²-2a
当a=-1时
原式=(-1)²-2×(-1)=1+2=3
采纳呗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询