高数题 用积分的换元法与分部积分法计算下列定积分 第6题和第10题 急
展开全部
(6)原式=(1/2)*∫(2x+3-3)/(x^2+3x+2)dx
=(1/2)*∫(2x+3)/(x^2+3x+2)dx-(3/2)*∫dx/(x+1)(x+2)
=(1/2)*∫d(x^2+3x+2)/(x^2+3x+2)-(3/2)*∫[1/(x+1)-1/(x+2)]dx
=(1/2)*ln|x^2+3x+2|-(3/2)*[ln|x+1|-ln|x+2|]+C,其中C是任意常数
(10)令x=√2sint,则dx=√2costdt
原式=∫(0,π/2) √2cost*√2costdt
=∫(0,π/2) 2cos^2tdt
=∫(0,π/2) (1+cos2t)dt
=[t+(1/2)*sin2t]|(0,π/2)
=π/2
=(1/2)*∫(2x+3)/(x^2+3x+2)dx-(3/2)*∫dx/(x+1)(x+2)
=(1/2)*∫d(x^2+3x+2)/(x^2+3x+2)-(3/2)*∫[1/(x+1)-1/(x+2)]dx
=(1/2)*ln|x^2+3x+2|-(3/2)*[ln|x+1|-ln|x+2|]+C,其中C是任意常数
(10)令x=√2sint,则dx=√2costdt
原式=∫(0,π/2) √2cost*√2costdt
=∫(0,π/2) 2cos^2tdt
=∫(0,π/2) (1+cos2t)dt
=[t+(1/2)*sin2t]|(0,π/2)
=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询