大学常微分方程 有关解的存在唯一性与延拓定理 设初值问题 dy/dx=(y^2-y-6)*e^(xy),y(x0)=y0, 10

的解的最大存在区间为(α,β),证明:α=-∞与β=+∞至少有一个成立。还有:dy/dx=(1-y^2)e^(xy^2),y(x0)=y(0)与上面一样求哪位神人帮忙啊发... 的解的最大存在区间为(α,β),证明:α=-∞与β=+∞至少有一个成立。
还有:dy/dx=(1-y^2)e^(xy^2),y(x0)=y(0) 与上面一样
求哪位神人帮忙啊
发到邮箱735900541@qq.com
展开
 我来答
yzx90425
2010-12-24 · 超过19用户采纳过TA的回答
知道答主
回答量:41
采纳率:100%
帮助的人:41.5万
展开全部
分析这个方程的切向量场,注意y=+-1的时候那个dy/dx=0的,然后分成3块分析,就是y>1,-1<y<1,y<-1.

这个题目我没记错的话,在北大那个什么常微分方程教程上面有原题的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式