1.已知扇形的圆心角为120°,面积为300πcm².
1.已知扇形的圆心角为120°,面积为300πcm².(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥。则这个圆锥的轴截面面积为多少?2.一个直角三角形两直角边...
1.已知扇形的圆心角为120°,面积为300πcm².
(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥。则这个圆锥的轴截面面积为多少?
2.一个直角三角形两直角边分别为4cm和3cm,以3cm长的直角边为轴旋转一周得到一个几何体,求这个几何体的表面积.
求详细过程。谢~ 展开
(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥。则这个圆锥的轴截面面积为多少?
2.一个直角三角形两直角边分别为4cm和3cm,以3cm长的直角边为轴旋转一周得到一个几何体,求这个几何体的表面积.
求详细过程。谢~ 展开
4个回答
展开全部
1、(1)设半径为R,S=ππR^2*120/360=300π,
R^2=900,
R=30cm,
弧长l=2πR*120/360=20π(cm).
扇形弧长为20πcm。
(2)、设底圆半径为r,
.2πr=20π,
r=10(cm),
设圆锥高为h,h也为轴截面三角形的高,
根据勾股定理,
h=√(R^2-r^2)=20√2(cm),
轴截面积S=2r*h/2=200√2(cm^2).
2、几何体为一个圆锥,底半径为4cm,高为3cm,母线长l为5cm,
底面积S1=π*4^2=16π(cm^2),
侧面积S2=2πr*l/2=πrl=20π(cm^2),
表面积S=16π+20π=36π(cm^2).
R^2=900,
R=30cm,
弧长l=2πR*120/360=20π(cm).
扇形弧长为20πcm。
(2)、设底圆半径为r,
.2πr=20π,
r=10(cm),
设圆锥高为h,h也为轴截面三角形的高,
根据勾股定理,
h=√(R^2-r^2)=20√2(cm),
轴截面积S=2r*h/2=200√2(cm^2).
2、几何体为一个圆锥,底半径为4cm,高为3cm,母线长l为5cm,
底面积S1=π*4^2=16π(cm^2),
侧面积S2=2πr*l/2=πrl=20π(cm^2),
表面积S=16π+20π=36π(cm^2).
苏州谭祖自动化科技有限公司_
2024-11-13 广告
2024-11-13 广告
苏州谭祖自动化科技有限公司专业提供高速精密分割器,凸轮及其他五金配件。随着现代工业对自动化、高速化、高精度化的日益追求,更可靠的凸轮分度器已成为当今世界上精密驱动的主流装置.它们作为自动化机器的核心传动装置发挥着至关重要的作用。此产品广泛用...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
展开全部
(1)已知扇120度,扇和整圆比是(120比360)1/3,求出整圆面积(用扇面积乘3)得900。根据圆面积公式求出圆半经。已知整圆半经,整圆周长就不用说了吧,(用周长工式)因为扇形占整圆1/3,除以三就OK了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-12-19
展开全部
第一题 由面积的半径为300^0.5
弧长=120/360*周长=20π*3^0.5/3
第二题 此几何体为圆锥
圆锥的底边周长为2*π*r=8*π(即圆锥展开后扇形的弧长)
圆锥的表面积即圆锥展开后扇形的的表面积=8*π*R/2=20*π
弧长=120/360*周长=20π*3^0.5/3
第二题 此几何体为圆锥
圆锥的底边周长为2*π*r=8*π(即圆锥展开后扇形的弧长)
圆锥的表面积即圆锥展开后扇形的的表面积=8*π*R/2=20*π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
s=360分之nπr的平方
300π=360分之120πr的平方
所以r=30
l=180分之nπr
l=180分之120*30π=20π
。。。对不对算一下啊
300π=360分之120πr的平方
所以r=30
l=180分之nπr
l=180分之120*30π=20π
。。。对不对算一下啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询