
高等数学,求详细过程,最好写在纸上
3个回答
展开全部
计算上麻烦一点
y+z=xf
分别对x和y求偏导
∂z/∂x=f+xf'(-2z)∂z/∂x
1+∂z/∂y=xf'(2y-2z∂z/∂x)
得到
∂z/∂x=f/(1+2zxf')
∂z/∂y=(2xyf'-1)/(1+2zxf')
那么
x∂z/∂x=xf/(1+2zxf')=(y+z)/(1+2zxf')
z∂z/∂x=(2xyzf'-z)/(1+2zxf')
x∂z/∂x+z∂z/∂x=(y+z+2xyzf'-z)/(1+2zxf')=y
y+z=xf
分别对x和y求偏导
∂z/∂x=f+xf'(-2z)∂z/∂x
1+∂z/∂y=xf'(2y-2z∂z/∂x)
得到
∂z/∂x=f/(1+2zxf')
∂z/∂y=(2xyf'-1)/(1+2zxf')
那么
x∂z/∂x=xf/(1+2zxf')=(y+z)/(1+2zxf')
z∂z/∂x=(2xyzf'-z)/(1+2zxf')
x∂z/∂x+z∂z/∂x=(y+z+2xyzf'-z)/(1+2zxf')=y
展开全部
y+z = xf(y^2-z^2),
两边对 x 求偏导,∂z/∂x = f+x(-2z∂z/∂x)f'
两边对 y 求偏导,1+∂z/∂y = x(2y-2z∂z/∂x)f'
解得 ∂z/∂x = f/(1+2xzf'), ∂z/∂y = (2xyf'-1)/(1+2xzf')
x∂z/∂x + z ∂z/∂y = [xf+z(2xyf'-1)]/(1+2xzf')
= (xf-z+2xyzf'-1/(1+2xzf') = (y+2xyzf'-1/(1+2xzf') = y
两边对 x 求偏导,∂z/∂x = f+x(-2z∂z/∂x)f'
两边对 y 求偏导,1+∂z/∂y = x(2y-2z∂z/∂x)f'
解得 ∂z/∂x = f/(1+2xzf'), ∂z/∂y = (2xyf'-1)/(1+2xzf')
x∂z/∂x + z ∂z/∂y = [xf+z(2xyf'-1)]/(1+2xzf')
= (xf-z+2xyzf'-1/(1+2xzf') = (y+2xyzf'-1/(1+2xzf') = y
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
还需要帮忙的话可以先采纳再详解
追问
你怎么这样!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询