这道数学题咋做啊?
3个回答
展开全部
an >0
a1+a2+...+an=Sn
Sn = an(an+1)/2
solution
(1)
Sn = an(an+1)/2
n=1
a1=a1(a1+1)/2
a1=1
for n>=2
an = Sn -S(n-1)
2an=an(an+1) - a(n-1)(a(n-1)+1)
(an)^2 -a(n-1)^2 - [an + a(n-1) ]=0
[an +a(n-1)].[an -a(n-1) -1] =0
an -a(n-1) -1=0
an - a(n-1) =1
=> { an } 是等差数列, d=1
(2)
an = 1+(n-1)
= n
Sn = n(n+1)/2
bn= 1/Sn
=2/[n(n+1)]
=2( 1/n - 1/(n+1) )
Tn = b1+b2+...+bn
= 2( 1- 1/(n+1) ]
=2n/(n+1)
a1+a2+...+an=Sn
Sn = an(an+1)/2
solution
(1)
Sn = an(an+1)/2
n=1
a1=a1(a1+1)/2
a1=1
for n>=2
an = Sn -S(n-1)
2an=an(an+1) - a(n-1)(a(n-1)+1)
(an)^2 -a(n-1)^2 - [an + a(n-1) ]=0
[an +a(n-1)].[an -a(n-1) -1] =0
an -a(n-1) -1=0
an - a(n-1) =1
=> { an } 是等差数列, d=1
(2)
an = 1+(n-1)
= n
Sn = n(n+1)/2
bn= 1/Sn
=2/[n(n+1)]
=2( 1/n - 1/(n+1) )
Tn = b1+b2+...+bn
= 2( 1- 1/(n+1) ]
=2n/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询