![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
利用极限存在准则证明:当x→0+ 时,x[x分之一]的极限为一。
展开全部
分析:若 1/(n+1)<x<=1/n 时 [1/x]=n
n/(n+1)<=x[1/x]=nx<=1
所以任给e>0,存在d=min(e,1/2)
那么任给x属于(0,d) 存在整数n使得 1/(n+1)<x<=1/n
此时 n<=1/x<n+1 故[1/x]=n
n/(n+1)<x[1/x]<=1
此时 |x[1/x]-1|<1/(n+1)<x<e
所以 lim[x->0+] x[1/x] =1
n/(n+1)<=x[1/x]=nx<=1
所以任给e>0,存在d=min(e,1/2)
那么任给x属于(0,d) 存在整数n使得 1/(n+1)<x<=1/n
此时 n<=1/x<n+1 故[1/x]=n
n/(n+1)<x[1/x]<=1
此时 |x[1/x]-1|<1/(n+1)<x<e
所以 lim[x->0+] x[1/x] =1
追问
为什么要取d=min(e,1/2)呢?
追答
免得找不到对应的整数n
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询