高等数学关于函数的连续性与间断点的问题
课后有一个习题,判断正误,并给出理由,(1)如果函数f(x)在a连续,那么|f(x)|也在a连续?这题那个a到底是表达f(x)在x=a处连续还是什么意思呢?...
课后有一个习题,判断正误,并给出理由,(1)如果函数f(x)在a连续,那么|f(x)|也在a连续?这题那个a到底是表达f(x)在x=a处连续还是什么意思呢?
展开
展开全部
理解正确。f(x)在x=a点处连续。
假设|f(x)|在a处不连续,则设左极限lim(x→a-)|f(x)|=A,右极限lim(x→a+)|f(x)|=B;
∴A≠B;A≥0且B≥0;
则函数f(x)在a处左极限lim(x→a-)f(x)=±A;右极限lim(x→a+)f(x)=±B;
则±A≠±B;
于是函数f(x)在a处lim(x→a-)f(x)≠lim(x→a+)f(x);
左右极限不相等;
则函数f(x)在a处极限不存在;
那么函数f(x)在a不连续;
这与已知条件相悖;
∴假设不成立;
∴|f(x)|也在a连续
假设|f(x)|在a处不连续,则设左极限lim(x→a-)|f(x)|=A,右极限lim(x→a+)|f(x)|=B;
∴A≠B;A≥0且B≥0;
则函数f(x)在a处左极限lim(x→a-)f(x)=±A;右极限lim(x→a+)f(x)=±B;
则±A≠±B;
于是函数f(x)在a处lim(x→a-)f(x)≠lim(x→a+)f(x);
左右极限不相等;
则函数f(x)在a处极限不存在;
那么函数f(x)在a不连续;
这与已知条件相悖;
∴假设不成立;
∴|f(x)|也在a连续
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |