如何判断奇偶性?
1个回答
展开全部
首先要判断定义域,奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
1、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。
2、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。
3、 如果对于函数定义域内的存在一个a,使得 f(a)不等于 f(-a),存在一个b,使得 f(-b) 不等于f(b),那么这个函数是非奇非偶函数。
奇偶性的运算:
两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数,两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数。
一个偶函数与一个奇函数相乘所得的积为奇函数,几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询