1到n的平方和是什么?
1个回答
展开全部
1²+2²+...+n²=n(n+1)(2n+1)/6
可以用数学归纳法证明:
1*2 + 2*3 + 3*4 + ... + n*(n+1)
= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= * (2n+1+3)
= n(n+1)(n+2)/3
平方数的性质
性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询