高等数学不定积分计算题?
2个回答
展开全部
(1)
∫ x(lnx)^2 dx
=(1/2)∫ (lnx)^2 dx^2
=(1/2)x^2.(lnx)^2 -∫ xlnx dx
=(1/2)x^2.(lnx)^2 -(1/2)∫ lnx dx^2
=(1/2)x^2.(lnx)^2 -(1/2)x^2.lnx +(1/2)∫ x dx
=(1/2)x^2.(lnx)^2 -(1/2)x^2.lnx +(1/4)x^2 +C
(2)
∫ x^2.lnx dx
=(1/3)∫ lnx dx^3
=(1/3)x^3.lnx -(1/3)∫ x^2 dx
=(1/3)x^3.lnx -(1/9)x^3 +C
∫ x(lnx)^2 dx
=(1/2)∫ (lnx)^2 dx^2
=(1/2)x^2.(lnx)^2 -∫ xlnx dx
=(1/2)x^2.(lnx)^2 -(1/2)∫ lnx dx^2
=(1/2)x^2.(lnx)^2 -(1/2)x^2.lnx +(1/2)∫ x dx
=(1/2)x^2.(lnx)^2 -(1/2)x^2.lnx +(1/4)x^2 +C
(2)
∫ x^2.lnx dx
=(1/3)∫ lnx dx^3
=(1/3)x^3.lnx -(1/3)∫ x^2 dx
=(1/3)x^3.lnx -(1/9)x^3 +C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询