展开全部
设P(x1,y1)Q(x2,y2)向量OP·OQ=0,所以x1x2+y1y2=0,因为X^2+Y^2+X-6Y+M=0且X+2Y-3=0,所以两方程连列,消去x得5y^2-20y+12+M=0,所以y1y2=(12+M)/5,y1+y2=4
x1x2=(3-2y1)(3-2y2)=9-6y1-6y2+4y1y2=9-6(y1+y2)+4y1y2=9-24+4(12+M)/5=4(12+M)/5-15
x1x2+y1y2=4(12+M)/5-15+(12+M)/5=0,所以M=3,X^2+Y^2+X-6Y+3=(X+1/2)^2+(Y-3)^2=25/4
所以圆心坐标(-1/2,3),R=5/2
x1x2=(3-2y1)(3-2y2)=9-6y1-6y2+4y1y2=9-6(y1+y2)+4y1y2=9-24+4(12+M)/5=4(12+M)/5-15
x1x2+y1y2=4(12+M)/5-15+(12+M)/5=0,所以M=3,X^2+Y^2+X-6Y+3=(X+1/2)^2+(Y-3)^2=25/4
所以圆心坐标(-1/2,3),R=5/2
参考资料: m
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询