数学 向量题 (详细过程)
在平行四边形OACB中,BD=1/3BC,OD与BA相交于E,证明:BE=1/4BA。(用向量证明)详细过程...
在平行四边形OACB中,BD=1/3BC,OD与BA相交于E,证明:BE=1/4BA。(用向量证明) 详细过程
展开
4个回答
展开全部
这种用向量来表示线段的题型 不算难
我的解题步骤如下:
根据空间向量的知识,这里选取(向量AA1),(向量AB),(向量AC)为基向量
由于(向量AM)=(向量AB)+(向量BM)
(向量BC1)=(向量BB1)+(向量BC)=(向量AA1)+(向量BC)=2(向量BM)
而(向量BC)=(向量BA)+(向量AC)=c-b
故(向量BM)=1/2*(a+c-b)
故(向量AM)=1/2*(a+c-b)+b=1/2*(a+b+c)
向量的上标还不会打 相信你看得懂
我的解题步骤如下:
根据空间向量的知识,这里选取(向量AA1),(向量AB),(向量AC)为基向量
由于(向量AM)=(向量AB)+(向量BM)
(向量BC1)=(向量BB1)+(向量BC)=(向量AA1)+(向量BC)=2(向量BM)
而(向量BC)=(向量BA)+(向量AC)=c-b
故(向量BM)=1/2*(a+c-b)
故(向量AM)=1/2*(a+c-b)+b=1/2*(a+b+c)
向量的上标还不会打 相信你看得懂
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
猜想点D在BC上,对吗?假设如此吧。
过点A作OD的平行线交BC的延长线于F,可知CF=BD=BF/4,DE=FA/4,向量BE=向量BD+向量DE=向量BF/4+向量FA/4=(向量BF+向量FA)/4=向量BA/4,所以BE=BA/4。
过点A作OD的平行线交BC的延长线于F,可知CF=BD=BF/4,DE=FA/4,向量BE=向量BD+向量DE=向量BF/4+向量FA/4=(向量BF+向量FA)/4=向量BA/4,所以BE=BA/4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
向量主要是画图,自己好好个图,在按照向量的定义推到一些就可以了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询