用定义法求三次根号下x平方的导数

用定义法求三次根号下x平方的导数... 用定义法求三次根号下x平方的导数 展开
 我来答
kknd0279
2016-10-26 · TA获得超过1.9万个赞
知道大有可为答主
回答量:3618
采纳率:73%
帮助的人:1650万
展开全部
y=x^(2/3),根据导数基本定义,f'(x)=lim(h→0) [f(x+h)-f(x)]/h
导数y'=lim(h→0) [(x+h)^(2/3)-x^(2/3)]/h
分子:[(x+h)^(1/3)+x^(1/3)]*[(x+h)^(1/3)-x^(1/3)],这里是平方差公式
分母:h
=lim(h→0)
分子:[(x+h)^(1/3)+x^(1/3)][(x+h)^(2/3)-(x+h)^(1/3)*x^(1/3)+x^(2/3)]*[(x+h)^(1/3)-x^(1/3)][(x+h)^(2/3)+(x+h)^(1/3)*x^(1/3)+x^(2/3)],
分母:h*[(x+h)^(2/3)+(x+h)^(1/3)*x^(1/3)+x^(2/3)]*[(x+h)^(2/3)-(x+h)^(1/3)*x^(1/3)+x^(2/3)]
=lim(h→0)
分子:[(x+h)+x)][(x+h)-x]
分母:h*[(x+h)^(2/3)+(x+h)^(1/3)*x^(1/3)+x^(2/3)]*[(x+h)^(2/3)-(x+h)^(1/3)*x^(1/3)+x^(2/3)]
=lim(h→0)
分子:2x+h
分母:[(x+h)^(2/3)+(x+h)^(1/3)*x^(1/3)+x^(2/3)]*[(x+h)^(2/3)-(x+h)^(1/3)*x^(1/3)+x^(2/3)],约去h
=1/[x^(2/3)+x^(2/3)+x^(2/3)][x^(2/3)-x^(2/3)+x^(2/3)]*(2x)
=1/[3x^(2/3)*x^(2/3)]*2x
=2/3*x/x^(4/3)
=2/3*1/x^(1/3)
=2/[3x^(1/3)]
因此y=x^(2/3)的导数为2/3*x^(-1/3)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式